Purpose

This document outlines recommended naming conventions for several popular novel psychoactive substances (NPS) subclassifications; however, it is not all-inclusive. NPS classes are broken down into commonly encountered subclassifications,\(^1,2\) which are defined by core structural features. Example figures and the currently used or existing naming conventions are included for each.

Disclaimer: Further evaluation to develop recommended naming conventions is ongoing.

Scope

The National Institute of Justice (NIJ), in partnership with its Forensic Technology Center of Excellence (FTCoE; 2016-MU-DX-K110) at RTI International and the Center for Disease Control and Prevention, convened a virtual Medicolegal Death Investigation Data Exchange Working Group (MDI-Data-WG) over 12 months, beginning in September 2020. The MDI-Data-WG was formed to advance forensic science and ensure communication between medical examiners and coroners (ME/Cs), death investigators, forensic scientists, and other stakeholders. An MDI-Data-WG subcommittee focused on methods of capturing and disseminating information on the types of drugs involved in deaths, including drug taxonomy and other categorizations and classification needs concerning drug naming, drug terms, drug mappings, and drug classification. The goal is to disseminate information to all relevant stakeholders to facilitate information exchange.
exchange of data related to drug overdose mortality. The work of the MDI-Data-WG resulted in a final report published by NIJ’s FTCoE and the Centers for Disease Control and Prevention that included guidance on moving toward consistency, data standards, and best practices for improving the process of handling novel psychoactive substances. The efforts of this working group resulted in various user case profiles, presentations, implementation forums, further research, and process mapping and evaluations of the various processes. This document is part of the final report.

1. Synthetic Cannabinoids
 a. **Introduction:** Synthetic cannabinoids (SCs) can be broken down into core, tail, linker, and head (or linked) groups, which help define structure and naming convention.

 ![Figure 1. Example of synthetic cannabinoids](image)

 ![Figure 2. JWH-018](image)

 ![Figure 3. JWH-250](image)

 ![Figure 4. CP 47,497](image)

 i. **Definition:** Contains head naphthyl moiety (red) accompanied by either core indole, indazole, carbazole, or methyl version moiety (blue)

 ii. Examples: JWH-018 (Figure 2), JWH-122, AM-2201, THJ-2201, MAM-2201, WIN55,212

 iii. Naming Convention: Historical SC Convention (XX-### based on inventor)

 c. **Phenylacetylindoles and Phenylacetylindazoles**

 i. **Definition:** Contains head/linker phenylacetyl moiety (red) accompanied by either core indole or indazole moiety (blue)

 ![Figure 3. JWH-250](image)

 ii. Examples: JWH-250 (Figure 3), RCS-8

 iii. Naming Convention: Historical SC Convention (XX-### based on inventor)

 d. **Cyclohexylphenols**

 i. **Definition:** Contains core cyclohexylphenol moiety (red) accompanied by a lipophilic tail moiety (blue)

 ![Figure 4. CP 47,497](image)

 ii. Examples: CP 47,497 (Figure 4); CP 55,490

 iii. Naming Convention: Historical SC Convention (XX-### based on inventor)
e. Benzoylindoles and Benzoylindazoles

i. Definition: Contains head/linker benzoyl moiety (red) accompanied by either core indole or indazole moiety (blue)

Figure 5. AM-679

ii. Examples: AM-679 (Figure 5), Pravadoline (WIN 48,098), RCS-4

iii. Naming Convention: Historical SC Convention (XX-### based on inventor)

f. Tetramethylcyclopropanoylindoles and Tetramethylcyclopropanoylindazoles

i. Definition: Contains head/linker tetramethylcyclopropanoyl moiety (red) accompanied by either core indole or indazole moiety (blue)

Figure 6. UR-144

ii. Examples: UR-144 (Figure 6), XLR-11, FUB-144

iii. Naming Convention: Historical SC Convention (XX-### based on inventor)

g. Adamantoylindoles, Adamantoylindazoles, Adamantylindole carboxamides, and Adamantylindazole carboxamides

i. Definition: Contains head adamantyl moiety (red) accompanied by either indole or indazole moiety (blue) with amide or ester linker (green)

Figure 7. APINACA (AKB48)

ii. Examples: APINACA (AKB48) (Figure 7), APICA

iii. Naming Convention: Modified Uchiyama (Alphanumeric sequence)

h. Quinolinyllindolecarboxylates, Quinolinyllindazolecarboxylates, Quinolinyllindolecarboxamides, and Quinolinyllindazolecarboxamides

i. Definition: Contains head quinolinyl or isoquinolinyl moiety (red) accompanied by core indole or indazole moiety (blue) with amide or ester linker (green)

Figure 8. PB-22

ii. Example: PB-22 (Figure 8), THJ-2201

iii. Naming Convention: Historical SC Convention (XX-### based on inventor)
Currently Applied Naming Conventions for Various Subclassifications of Novel Psychoactive Substances (NPS)

i. Naphthylindolecarboxylates, Naphthylindazolecarboxylates, Naphthylindole carboxamides, and Naphthylindazole carboxamides

i. Definition: Contains head naphthyl moiety (red) accompanied by either core indole or indazole (blue) with amide or ester linker (green)

![Figure 9. NM-2201](image)

ii. Examples: NM-2201 (Figure 9), SDB-005, FDU-PB-22, NNEI, MN-18

iii. Naming Convention: Historical SC Convention (XX-### based on inventor)

j. Alkylcarbonyl indole carboxamides, Alkylcarbonyl indazole carboxamides, Alkylcarbonyl indole carboxylates, and Alkylcarbonyl indazole carboxylates

i. Definition: Contains head alkylcarbonyl moiety (red) accompanied by either core indole or indazole (blue) with amide or ester linker (green)

![Figure 10. ADB-PINACA (left), AB-FUBINACA (center), MDMB-CHMICA (right)](image)

ii. Examples: AB-PINACA, ADB-PINACA (Figure 10, left); AB-FUBINACA (Figure 10, center), ADB-FUBINACA, AB-CHMINACA, MMB-FUBINACA (FUB-AMB), MDMB-FUBINACA,MDMB-CHMICA (Figure 10, right), PX-1, PX-2, 5F-MDMB-PINACA (5F-ADB)

iii. Naming Convention: Modified Uchiyama (Alphanumeric sequence)

k. Cumylindolecarboxamides and Cumylindazolecarboxamides

i. Definition: Contains head N-(2-phenylpropan-2-yl) moiety (red) accompanied by either core indole, indazole, or other (blue) with amide or ester linker (green)

![Figure 11. CUMYL-PICA (left), CUMYL-PeGACLONE (right)](image)

ii. Examples: CUMYL-PICA (Figure 11, left), 4CN-CUMYL-BINACA, CUMYL-PeGACLONE (Figure 11, right)

iii. Naming Convention: Modified Uchiyama (Alphanumeric sequence)

l. Oxindole Hydrazides

i. Definition: Contains head alkylcarbonyl moiety (red) accompanied by a core 2-oxindole (blue) and hydrazide linker (green)

![Figure 12. BZO-POXIZID](image)

ii. Examples: BZO-POXIZID (Figure 12), BZO-HEXOXIZID, 5F-BZO-POXIZID

iii. Naming Convention: Modified Uchiyama (Alphanumeric sequence)

m. Several new subclasses of synthetic cannabinoids are emerging and were not included here; further discussion and review of these subclasses is needed.
2. Stimulants & Hallucinogens:

a. Simple Substituted phenethylamines

i. Definition: Contains phenethylamine core structure (in red) but with no substitutions on the α or β carbon; the amine may or may not have an alkyl group or groups

 Figure 13. 2-bromophenethylamine (left), 2C-P (center), and 25I-NBOMe (right)

 ii. Examples: 2-bromophenethylamine (Figure 13, left), 2C-P (Figure 13, center), and 25I-NBOMe (Figure 13, right)

 iii. Naming Conventions: Varied depending on specific substitution patterns

 • Sometimes names are spelled out and sometimes common acronyms are used (“methylenedioxymethamphetamine” is abbreviated to “MDMA”)
 • One example of a naming convention used for a site-specific core substitution is the “DOX” naming system that is used for amphetamines with a 2,5-dimethoxy substitution on the aryl ring where X is a letter describing the 4-position substituent

b. Simple Substituted Amphetamines

i. Definition: Contains the phenethylamine core structure and an alkyl substitution on the α, but no β carbonyl (in red); the amine may or may not have an alkyl group or groups

 Figure 14. 4-Methylamphetamine (left), 3,4-MDMA (center), and DOI (right)

 ii. Examples: 4-Methylamphetamine (Figure 14, left), 3,4-MDMA (Figure 14, center), and DOI (Figure 14, right)

 iii. Naming Conventions: Varied depending on specific substitution patterns

 • Sometimes names are spelled out and sometimes common acronyms are used (“pyrrolidinovalerophenone” is abbreviated to “PVP”)

 • Some cathinones are named as “beta-keto” (“bk”) versions of their corresponding amphetamines as in bk-MDEA (where MDEA stands for methylenedioxyethamphetamine)

 Figure 15. α-Pyrrolidinovalerophenone (far left), Buphedrone (center left), bk-MDEA (center right), and Methylone (far right)

 ii. Examples: α-Pyrrolidinovalerophenone (Figure 15 far left), Buphedrone (Figure 15, center left), bk-MDEA (Figure 15, center right), and Methylone (Figure 15, far right)

 iii. Naming Conventions: Varied depending on specific substitution patterns

 • Sometimes names are spelled out and sometimes common acronyms are used (“pyrrolidinovalerophenone” is abbreviated to “PVP”)

 • Some cathinones are named as “beta-keto” (“bk”) versions of their corresponding amphetamines as in bk-MDEA (where MDEA stands for methylenedioxyethamphetamine)
• Many cathinones can have a name with the suffix of “drone” or “ylone” as well; the “ylones” have a methylenedioxy ring fused to the aryl ring and the “drones” do not

d. Substituted Tryptamines
i. Definition: Contains tryptamine core structure (red); the amine may or may not have an alkyl group or groups

Figure 16. 5-Chloro Tryptamine (left), 5-Methoxy NMT (center), and EPT (right)

ii. Examples: 5-Chloro Tryptamine (Figure 16, left), 5-Methoxy NMT (Figure 16, center), and EPT (Figure 16, right)

iii. Naming Convention: Letter code acronyms are often used to abbreviate substituents; for example, “N-Methyl Tryptamine” is abbreviated to “NMT” and “N-Ethyl-N-Propyl Tryptamine” is abbreviated to EPT

e. Lysergamides
i. Definition: Contains core structure similar to LSD

Figure 17. LSD (left), 1P-LSD (center left), PRO-LAD (center right), and MIPLA (right)

ii. Examples: LSD (Figure 17, left), 1P-LSD (Figure 17, center left), PRO-LAD (Figure 17, center right), and MIPLA (Figure 17, right)

iii. Naming Convention: Letter code acronyms are often used to abbreviate substituents to the core

f. Substituted Arylcyclohexylamines
i. Definition: Contains arylcyclohexylamine core structure (red); there may or may not be a ketone in the 2-position on cyclohexane ring

Figure 18. PCP (left), 4-MeO-PCE (center left), Methoxetamine (center), Ketamine (center right), and 2F-Deschloroketamine (right)

ii. Examples: PCP (Figure 18, left), 4-MeO-PCE (Figure 18, center left), Methoxetamine (Figure 18, center), Ketamine (Figure 18, center right), and 2F-Deschloroketamine (Figure 18, right)

iii. Naming Conventions: Varied

• “PCP” is an acronym of “phenyl cyclohexyl piperidine,” but it is also known as phencyclidine
• Analogues with a ketone in the 2-position on the cyclohexane are often named with “2-oxo” before the “PCP” designation
• The change from “PCP” to the “PCE” acronym represents the swapping of the piperidine ring to an N-ethyl group
Many of these compounds have multiple synonyms, for example, “Methoxetamine” is also known as “MXE” and “3-MeO-2′-oxo-PCE”

Because Phencyclidine and Ketamine are well-known names, many analogues are named as derivatives of those drugs as in “2F-Deschloroketamine” whose name denotes that the prototypical chlorinenewas replaced with a fluorine.

3. Opioids

a. Fentanyl Derivatives

i. Definition: Contain core structure similar to fentanyl

![Figure 20. Fentanyl](image)

ii. Examples: Acetylfentanyl, Carfentanil, para-Fluoroisobutyrylfentanyl

iii. Naming Convention: Scheme developed by Cayman Chemicals

b. U-Series Derivatives

i. Definition: Contains cyclohexylamino group and benzyl or phenyl group connected by an amide

![Figure 21. Naming convention developed by Cayman Chemical for fentanyl analogues](image)

![Figure 22. U-47700 (left), Difluoro U-48800 (right)](image)

ii. Examples: U-47700 (Figure 22, left), U-49900, N-ethyl U-47700, Naphthyl U-47700, Difluoro U-48800 (Figure 22, right)

iii. Naming Convention: Historical convention (XX-###) based on inventor OR names developed for recreational use/sale; new modifications are named based on U-47700 or others
NIJ Forensic Technology Center of Excellence
Currently Applied Naming Conventions for Various Subclassifications of Novel Psychoactive Substances (NPS)

c. Benzimidazoles (Nitazenes)
 i. Definition: Contains benzimidazole core (with or without nitro group), substituted benzyl group, and substituted ethylamino group

![Figure 23. Isotonitazene](image)

ii. Examples: Etonitazene, Isotonitazene (Figure 23), Metonitazene, Clonitazene, Etodesnitazene, 5-Amino isotonitazene, 4'-Hydroxy nitazene, N-pyrrolidino etonitazene

iii. Naming Convention: Named based on structural modifications in relation to “etonitazene”

d. Benzimidazolones
 i. Definition: Contains benzimidazolone, piperidine, and benzyl group

![Figure 24. Brorphine](image)

 ii. Examples: Brorphine (Figure 24)

 iii. Naming Convention: Named based on structural modifications in relation to “brorphine”

e. Cinnamylpiperazines (AP Series)
 i. Definition: Contains cinnamylpiperazine and alkylcarbonyl

![Figure 25. AP-237](image)

 ii. Examples: AP-237 (Figure 25), 2-Methyl AP-237, AP-238, para-Methyl AP-237

 iii. Naming Convention: Historical convention (XX-###) based on inventor OR names developed for recreational use/sale; new modifications are named based on AP-237 or others

![Figure 26. Naming convention developed by Cayman Chemical for AP-237 analogues](image)

f. Thiambutenes
 i. Definition: Substituted (RS)-4,4-dithiophen-2-yl-but-3-en-2-amine

![Figure 27. Piperidylthiambutene](image)

 ii. Examples: Piperidylthiambutene (Figure 27)

 iii. Naming Convention: Named based on structural modifications in relation to “thiambutene”
g. **MTs**
 i. Definition: 1-substituted-4-(1,2-diphenylethyl)piperazine derivatives

 ![Figure 28. MT-45](image)

 ii. Example: MT-45 (Figure 28)

 iii. Naming Convention: Named based on structural modifications in relation to “MT-45”

h. **Viminols**
 i. Definition: Based on the core of viminol – 1-[[2-Chlorophenyl]methyl]pyrrol-2-yl]-2-[di(butan-2-yl)amino]ethanol

 ![Figure 29. 2F-Viminol](image)

 ii. Example: 2F-Viminol (Figure 29)

 iii. Naming Convention: Named based on structural modifications in relation to “viminol”

4. **Benzodiazepines**
 a. **2-Keto**
 i. Definition: Contains carbonyl in position 2 of the benzdiazepine ring

 ![Figure 31. Diazepam (left), Flurazepam (middle), Clorazepate (right)](image)

 ii. Examples: Diazepam (Figure 31, left), Flurazepam (Figure 31, center), Clorazepate (Figure 31, right), Halazepam, Prazepam, Chlordiazepoxide

 iii. Naming Convention: Historical nomenclature, ending with the suffix “azepam”
Currently Applied Naming Conventions for Various Subclassifications of Novel Psychoactive Substances (NPS)

b. 3-Hydroxy
i. Definition: Contains a hydroxy group in the third position

![Figure 32. Oxazepam (left), Lorazepam (right)](image)

ii. Examples: Oxazepam (Figure 32, left), Lorazepam (Figure 32, right), 3-Hydroxyphenazepam, Lormetazepam, Temazepam

iii. Naming Convention: Historical nomenclature, ending with the suffix “azepam” like 2-keto benzodiazepines but name modified based on added group

c. 7-Nitro / 8-Nitro
i. Definition: Contain a nitro group in the 7 or 8 position

![Figure 33. Flunitrazepam (left), Nitrazepam (right)](image)

ii. Examples: Flunitrazepam (Figure 33, left), Nitrazepam (Figure 33, right), Nimetazepam, Clonazepam

iii. Naming Convention: Historical nomenclature, ending with the suffix “azolam” or “azenil”

d. Triazolo
i. Triazolo ring added to positions 1 and 2

![Figure 34. Clonazolam](image)

ii. Examples: Clonazolam (Figure 34), Alprazolam, Adinazolam, Flubromazolam, Estazolam, Triazolam

iii. Naming Convention: Historical nomenclature, ending with the suffix “azolam”

e. Imidazo
i. Definition: Contains a five-membered ring with only 2 nitrogens

![Figure 35. Midazolam](image)

ii. Examples: Midazolam (Figure 35), Imidazenil, Flumazenil, Bretazenil, Climazolam, Loprazolam

iii. Naming Convention: Historical nomenclature, ending with the suffix “azolam” or “azenil”

f. 1,5-Benzodiazepines
i. Definition: Contains two nitrogen atoms at positions 1 and 5 in a seven-membered diazepine ring fused to a benzene ring; they are 2,3-benzofused derivatives of the dihydridiazepines
Currently Applied Naming Conventions for Various Subclassifications of Novel Psychoactive Substances (NPS)

Figure 36. Clobazam

ii. Examples: Clobazam (Figure 36), Arfendazam, Lofendazam, CP-1414S

iii. Naming Convention: Historical nomenclature, ending with the suffix “azam”

g. Thienodiazepine

i. Definition: Contain a thiophene ring fused to the diazepine ring

Figure 37. Etizolam

ii. Examples: Etizolam (Figure 37), Deschloroetizolam, Brotizolam, Metizolam, Fluclotizolam

iii. Naming Convention: Historical nomenclature, usually ending in “azolam” due to addition of triazole ring, usually contains “tiz” within the name to signify the thiophene ring

5. Others

a. Additional NPS subclassifications will be added as the document is further revised.

References

RTI International (RTI) and its academic and community based-consortium of partnerships, including its Forensic Science Education Programs Accreditation Commission partners, work to meet all tasks and objectives put forward under the National Institute of Justice (NIJ) Forensic Technology Center of Excellence (FTCoE) Cooperative Agreement (award numbers 2016-MU-BX-K110 and 2011-DN-BX-K564). These efforts include determining technology needs; developing technology program plans to address those needs; developing solutions; demonstrating, testing, evaluating, and adopting potential solutions into practice; developing and updating technology guidelines; and building capacity and conducting outreach.

The NIJ FTCoE is led by RTI, a global research institute dedicated to improving the human condition by turning knowledge into practice. With a staff of more than 5,000 providing research and technical services to governments and businesses in more than 58 countries, RTI brings a global perspective. The FTCoE builds on RTI’s expertise in forensic science, innovation, technology application, economics, data analytics, statistics, program evaluation, public health and information science.

NIJ is the research, development, and evaluation agency of the U.S. Department of Justice. NIJ is dedicated to improving knowledge and understanding of crime and justice issues through science. NIJ provides objective and independent knowledge and tools to inform the decision-making of the criminal and juvenile justice communities to reduce crime and advance justice, particularly at the state and local levels.

The NIJ Office of Investigative and Forensic Sciences (OIFS) is the federal government’s lead agency for forensic science research and development. OIFS’ mission is to improve the quality and practice of forensic science through innovative solutions that support research and development, testing and evaluation, technology, information exchange, and the development of training resources for the criminal justice community.

Suggested Citation