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Samples
This study involved the analysis of two positional isomer sets and
one constitutional isomer set. The two positional isomer sets
involved the 2-, 3-, and 4-chloroethcathinone (CEC) and
methoxymethcathinone (MeOMC) isomers. The constitutional
isomer set was composed of dibutylone, eutylone, pentylone, and
its positional isomer, 2,3-pentylone. All isomers were prepared at
concentrations of 50, 100, and 500 ppm.

Instrumentation and Data Analysis

GC-EI-MS analysis was conducted using an Agilent Technologies
7890A GC-5975C MS with an Agilent DB-5ms 30 m x 250 µm x 0.25
µm column. Microsoft Excel was used to normalize the ion
abundances to the base peak of each spectrum. The relative ion
abundances were imported as variables into the SPSS software to
generate the CDA models.

CDA Models
Initially, four sets of CDA models were generated for each of the
isomer sets using the following conditions: 1) all three
concentrations; 2) only the 100 and 500 ppm concentrations; 3)
the constitutional isomer set without the 2,3-pentylone positional
isomer; and 4) a combined dataset with all 10 isomers using all
three concentrations. Two ion selection methods, referred to as the
consensus and PCA loadings methods, were developed for the
combined dataset with all 10 isomers due to no consensus for the
15 most abundant ions. The consensus method involved the 5
most abundant ions from all ten isomers and 10 abundant ions that
are known to be structurally relevant for synthetic cathinones. In
comparison, the PCA loadings method used the 15 ions with the
highest PCA loadings based on the absolute sum of the first two
principal components. The PCA loadings method was then applied
to each of the isomer sets to determine the difference between the
classification rates using only the 15 most abundant ions and the
PCA loadings method.

.

►Developed an alternative technique for determining isomeric identity using a multivariate analysis approach
conducted through commercial software

oThe data required for the technique is generated during a typical seized drug analytical scheme

►Using the most abundant ions produces similar results to the PCA loadings ions

oReduces the amount of time spent using the SPSS software
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4. Results

5. Conclusions

►Did not apply this approach to authentic casework samples to assess the potential impact of impurities

►This approach may not work for other compounds, such as those that produce more fragment-rich mass spectra

7. Limitations

This study investigates the use of CDA for the differentiation of
three synthetic cathinone isomer sets using GC-EI-MS. In addition,
this study explores reduction strategies to reduce the number of
replicate sample injections required to develop accurate
multivariate models. Finally, this study compares two ion selection
methods prior to CDA classification, which are the most abundant
ions and the ions with the highest principal component analysis
(PCA) loadings.

Synthetic cathinones are a class of phenylalkylamine derivatives
that are designed to mimic cathinone, the natural psychoactive
substance found in the leaves of the Catha edulis plant, often
referred to as “khat” [1]. The scheduling of synthetic cathinones is
compound specific, which means only slight chemical modifications
are required to avoid legislative restrictions [2]. This places the
burden on seized drug analysts to differentiate between non-
scheduled and scheduled synthetic cathinone isomers.

Currently, forensic laboratories rely on gas chromatography-
electron ionization-mass spectrometry (GC-EI-MS) for the
differentiation of synthetic cathinone isomers. However, the
differentiation of synthetic cathinone isomers is primarily
dependent on slight differences in the EI mass spectra. Whereas
skilled analysts may decipher these minor differences, a more
robust approach is necessary for the reliable differentiation of
synthetic cathinone isomers.

Canonical discriminant analysis (CDA) is one potential solution for
this issue. CDA is a supervised technique that classifies an unknown
into one of the known groups used to develop the model. However,
multivariate analysis techniques often require relatively large
datasets to develop robust statistical models [3], which is not easily
incorporated into the traditional forensic laboratory approach.

1. Introduction

2. Objectives

Figure 1. Combined isomer set CDA models for the consensus method and the PCA loadings method. 

CDA Classification

►LOOCV classification rates of 90.2% and 100.0% with 15
ions and apex data and at least 67.9%, 98.0%, and
98.1% for the reduction strategies dataset

Improved CDA Classification

►Removal of the lowest concentration from each of the
three isomer sets improved overall classification rates
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Table 1. CDA classification rates for the three 
isomer sets using all three concentrations.

CEC
Number of scans

1 3 5

Number of 
ions

5
(75.1%, 
75.1%)
N = 225

(73.3%, 
72.3%)
N = 675

(68.2%, 
67.9%)

N = 1125

10
(91.6%, 
88.0%)
N = 225

(87.3%, 
86.2%)
N = 675

(82.2%, 
81.6%)

N = 1125

15
(94.7%, 
90.2%)
N = 225

(89.3%, 
88.6%)
N = 675

(86.5%, 
86.0%)

N = 1125

MeOMC
Number of scans

1 3 5

Number of 
ions

5
(98.7%, 
98.7%)   
N = 225

(98.8%, 
98.7%) 
N = 675

(98.0%, 
98.0%) 

N = 1125

10
(100.0%, 
100.0%) 
N = 225

(99.7%, 
99.7%) 
N = 675

(99.3%, 
99.2%) 

N = 1125

15
(100.0%, 
100.0%) 
N = 225

(99.7%, 
99.7%) 
N = 675

(99.5%, 
99.1%) 

N = 1125

Constitutional
Number of scans

1 3 5

Number of 
ions

5
(98.7%, 
98.7%) 
N = 300

(98.6%, 
98.4%) 
N = 900

(98.1%, 
98.1%) 

N = 1500

10
(99.7%, 
99.7%) 
N = 300

(99.0%, 
99.0%) 
N = 900

(99.1%, 
98.9%) 

N = 1500

15
(100.0%, 
100.0%) 
N = 300

(100.0%, 
100.0%) 
N = 900

(99.9%, 
99.7%) 

N = 1500
The first percentage is the original classification, and the second 
percentage is the cross-validation classification. The N is the 
number of data points used to build the CDA model.

CEC
Number of scans

1 3 5

Number of 
ions

5
(86.7%, 
86.0%)
N = 150

(81.8%, 
80.7%)
N = 450

(75.7%, 
75.3%)
N = 750

10
(98.7%, 
95.3%)
N = 150

(94.4%, 
92.7%)
N = 450

(90.0%, 
89.3%)
N = 750

15
(98.7%, 
98.7%)
N = 150

(97.1%, 
95.3%)
N = 450

(92.5%, 
91.7%)
N = 750

MeOMC
Number of scans

1 3 5

Number of 
ions

5
(99.3%, 
99.3%)   
N = 150

(99.3%, 
99.3%) 
N = 450

(99.3%, 
99.3%) 
N = 750

10
(100.0%, 
100.0%) 
N = 150

(100.0%, 
100.0%) 
N = 450

(99.9%, 
99.9%) 
N = 750

15
(100.0%, 
100.0%) 
N = 150

(100.0%, 
100.0%) 
N = 450

(100.0%, 
99.9%) 
N = 750

Constitutional
Number of scans

1 3 5

Number of 
ions

5
(99.5%, 
99.5%) 
N = 200

(99.7%, 
99.7%) 
N = 600

(99.4%, 
99.4%) 

N = 1000

10
(99.5%, 
99.5%) 
N = 200

(99.5%, 
99.5%) 
N = 600

(99.7%, 
99.6%) 

N = 1000

15
(100.0%, 
100.0%) 
N = 200

(100.0%, 
100.0%) 
N = 600

(100.0%, 
99.9%) 

N = 1000
The first percentage is the original classification, and the second 
percentage is the cross-validation classification. The N is the 
number of data points used to build the CDA model.

Figure 4. Constitutional CDA model with 15 ions and 1 scan (a) and the ion 
correlation plot of the model (b).  

Figure 2. CEC CDA model with 15 ions and 1 scan (a) and the ion correlation 
plot of the model (b). 

Consensus

(94.1%, 94.1%)

N = 3750

PCA Loadings

(80.3%, 80.0%)

N = 3750 

Ion selection method Positional (CEC) Positional (MeOMC) Constitutional

Abundant
(86.5%, 86.0%)

N = 1125
(99.5%, 99.1%)

N = 1125
(99.9%, 99.7%)

N = 1500

PCA Loadings
(86.1%, 85.7%)

N = 1125
(99.6%, 99.5%)

N = 1125
(99.9%, 99.9%)

N = 1500
The first percentage is the original classification, and the second percentage is the cross-
validation classification. The N is the number of data points used to build the CDA model.

Table 3. Comparison of ion selection methods for each of the isomer sets with 
the CDA model using 15 ions and 5 scans across the chromatographic peak. 

Table 2. CDA classification rates for the three 
isomer sets using only 100 and 500 ppm. 
concentrations.

Figure 3. MeOMC CDA model with 15 ions and 1 scan (a) and the ion 
correlation plot of the model (b).  
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Ion Selection Methods

►For each of the three isomer sets, using the highest
PCA loadings ions resulted in similar classification
rates as using the most abundant ions

Ion Correlation

►Ion correlation plots help explain why there are
differences in the classification rates when
removing ions from the dataset


