Introduction

Portable Advanced 3D Imaging for Footwear and Tire Impression Capture

Portable Advanced 3D Imaging for Footwear and Tire Impression Capture

This webinar originally occurred on October 23, 2019
Duration: 1.5 hours

Overview

This webinar will explain the principles and capabilities of a fully automated portable system with an easy-to use-graphical user interface (GUI) for shoe and tire impression capture. We have four prototype systems ready to be evaluated by interested examiners or practitioners, providing opportunities for users to interact with the system and provide feedback to further improve the technology.

The entire hardware system includes a digital complementary metal-oxide semiconductor (CMOS) camera, a digital-light-processing (DLP) projector, and a laptop computer. The 3D scanning system is being developed in Professor Song Zhang’s laboratory at Purdue University. The system is calibrated during initial assembly and simply needs to be plugged into an outlet and a laptop via a USB3.0 port for immediate data capture. The camera and the projector are precisely synchronized to allow a sequence of defocused binary structured light patterns to be captured by the camera. The captured images are processed to create a 3D surface map at camera-pixel spatial resolution, and simultaneously record a color image (or texture) that is 100% aligned with the 3D surface using the same camera. The image acquisition takes a fraction of a second, and the automated 3D reconstruction takes a few seconds. 3D data can be immediately visualized on the screen for monitoring capture quality or saved to digital storage media in standard 3D mesh formats (e.g., OBJ, STL, PLY).

The graphical user interface (GUI) includes the camera control, visualization, and data handling modules. The entire GUI was developed with Qt, C++, OpengGL, and OpengCV by Professor Song Zhang’s team with the special emphasis on making the GUI intuitive and easy to use. The camera control module allows a user to manually or automatically adjust camera exposure, and then click a button for 3D image acquisition.  The visualization module enables the user to examine the quality of data in both 2D and 3D. This module allows the 3D data manipulation such as zoom-in and zoom-out, rotation, and translation, as well as different visualization mode selections such as shaded, textured, wired or different depth colorization. The data handling module offers data reading and writing, as well as screenshot creation.

The prototype system was designed to capture an area of approximately 14”x10” with a spatial resolution of approximately 137 ppi (pixels per inch).  Our team has conducted two workshops, one at 2018 IPTES (Alexandria, Virginia) and the second one at the 2018 IAI Annual conference (San Antonio, Texas). The system has been extensively tested by our team, the workshop participants, a team of forensic examiners from Omaha Police Department, as well as some volunteers. We have received extremely positive comments on the performance and usability of the system from workshop participants and other evaluators.

Detailed Learning Objectives

  1. Attendees will become familiarized with one advanced 3D imaging instrument specifically for tire and shoe impression capture.
  2. Attendees will become familiarized with the principle behind such an advanced 3D imaging technology.
  3. Attendees will learn how to use such an advanced imaging technology for evidence collection.

Presenter

  • Song Zhang, Ph.D. | Professor, Purdue University


Funding for this Forensic Technology Center of Excellence webinar has been provided by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice.

The opinions, findings, and conclusions or recommendations expressed in this webinar are those of the presenter(s) and do not necessarily reflect those of the U.S. Department of Justice.

Contact us at ForensicCOE@rti.org with any questions and subscribe to our newsletter for notifications.


Related Content

What FSSP Leaders Should Know about Artificial Intelligence and its Application to Forensic Science In-Brief

Date December 2023 Overview Artificial intelligence (AI), which leverages computers to perform tasks that enhance decision-making, problem-solving capabilities, and technology-driven innovativeness,” is a rapidly growing area of interest for both industry and the federal research and development (R&D) community.1 For forensic science service…

FLN-TWG: A Roadmap to Improve Research and Technology Transition in Forensic Science

← Back to FLN-TWG Main Page  Forensic Laboratory Needs Technology Working Group (FLN-TWG) The National Institute of Justice (NIJ), in partnership with the Forensic Technology Center of Excellence (FTCOE) at RTI International, formed the Forensic Laboratory Needs Technology Working Group…

Evaluation of Purdue University’s 3D Imaging Prototype for Footwear and Tire Impressions

Date September 2022 Overview Supported by two National Institute of Justice (NIJ) awards (2016-DN-BX-0189 and 2019-R2-CX-0069), Dr. Song Zhang and his research team at Purdue University led the development of a fully automated 3D imaging system for footwear and tire…