Introduction

Developing a Dynamic Model of the DNA Lab Process

Developing a Dynamic Model of the DNA Lab Process

Overview

This webinar detailed the development of a model that synthesizes, in silico, allele, stutter and noise signal generated from stochastic variation induced by the forensic DNA laboratory process.

A certificate of completion is available for all who register and attend this webinar.

Presenter

  • Catherine M. Grgicak, Ph.D.

Funding for this Forensic Technology Center of Excellence webinar has been provided by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice.

The opinions, findings, and conclusions or recommendations expressed in this webinar are those of the presenter(s) and do not necessarily reflect those of the U.S. Department of Justice.

Contact us at ForensicCOE@rti.org with any questions and subscribe to our newsletter for notifications.


Related Content

Next Generation Sequencing Virtual Roundtable: Perspectives from Early Adopters and Researchers

Date August 2024 Overview In 2023, the Forensic Technology Center of Excellence (FTCOE), in partnership with the National Institute of Justice (NIJ), convened a virtual roundtable of forensic science service providers (FSSPs) and forensic science researchers with experience implementing next…

DNA Recovery After Sequential Processing of Latent Fingerprints on Black Polyethylene Plastic

Publication Journal of Forensic Sciences, February 2024  Authors Abigail S. Bathrick | Bode Technology Sarah Norsworthy | RTI International Dane T. Plaza | Bode Technology Mallory N. McCormick | United States Secret Service Donia Slack | RTI International Robert S. Ramotowski | United States Secret Service …

Success Story: NIJ and The New York City OCME Validating Confirmatory Body Fluid Identification Assays for Real-World Impact

National Institute of Justice and The New York City OCME Date December 2023 Overview Support from the National Institute of Justice (NIJ) enabled the New York City OCME to develop and validate proteomic mass spectrometry body fluid assays to support…